\[ \displaystyle \int _{ 0 }^{ 1 }\int _{ 0 }^{ 1 } \dfrac { { \ln }^{ 2 }(1-xy) }{ xy } \ dx \ dy \]

If the double integral above can be represented as \( \dfrac { { \pi }^{ A } }{ B } \), where \(A,B\) are positive integers, find \(A^2+B^2-32236\).

This is original. Check out my Set

×

Problem Loading...

Note Loading...

Set Loading...