\[\displaystyle \sum_{m=1}^{\infty} \sum_{k=0}^{\infty} \dfrac{(-1)^m}{(2k + 1)^2 + m^2} = \dfrac{\pi \text{ ln } a - \pi^b}{c^d}\]

Find \(13\times(a + b + c + d)\)

\(a,b,c\) are prime numbers and \(d\) is an integer

\( \text{ ln } \)- natural logarithm

×

Problem Loading...

Note Loading...

Set Loading...