Forgot password? New user? Sign up
Existing user? Log in
∑n=0∞(−π24)n(2n+1)!=(Aπ)B\sum _{ n=0 }^{ \infty }{ \frac { { \left( -\frac { { \pi }^{ 2 } }{ 4 } \right) }^{ n } }{ \left( 2n+1 \right) ! } } ={ \left( \frac { A }{ \pi } \right) }^{ B }n=0∑∞(2n+1)!(−4π2)n=(πA)B
If the equation above holds true for integers AAA and BBB, find the value of A+BA+BA+B.
Problem Loading...
Note Loading...
Set Loading...