\[\displaystyle{\large{\int^{\infty}_{0} \dfrac{e^{-2x}}{\sqrt{5+x}} \ dx = \sqrt{\dfrac{\pi}{a}}e^{ab}(1-\text{erf}(\sqrt{ab}))}}\]

where \(a,b\) \(\in \mathbb R^{+} \neq 0\).

Calculate \(\dfrac{a+b+2ab}{3}\)

**Notations:** \(\text{erf }(\cdot)\) denotes the **error function**.

×

Problem Loading...

Note Loading...

Set Loading...