Forgot password? New user? Sign up
Existing user? Log in
The function fff from the real numbers to the real numbers satisfies f(1)=4f(1) = 4 f(1)=4, and
f(x+y)=(1+yx+1)f(x)+(1+xy+1)f(y)+x2y+xy+xy2, \begin{aligned} f(x+y) = & \left(1 + \frac {y}{x+1}\right) f(x) + \left(1 + \frac {x}{y+1} \right) f(y) \\ & + x^2y + xy + xy^2, \end{aligned}f(x+y)=(1+x+1y)f(x)+(1+y+1x)f(y)+x2y+xy+xy2,
for x,y≠−1 x, y \neq -1x,y=−1, x,yx, yx,y real numbers. If f(53)=ab f \left( \frac {5}{3} \right)=\frac {a}{b} f(35)=ba, where aaa and bbb are coprime positive integers, what is the value of a+ba+ba+b?
Problem Loading...
Note Loading...
Set Loading...