Forgot password? New user? Sign up
Existing user? Log in
Let aaa, bbb, ccc, ddd be real numbers such that b−d≥12.5b-d \geq 12.5b−d≥12.5 and all zeroes β1,β2,β3,\beta_1, \beta_2, \beta_3,β1,β2,β3, and β4\beta_4β4 of the polynomial P(x)=x4+ax3+bx2+cx+dP(x)=x^4+ax^3+bx^2+cx+dP(x)=x4+ax3+bx2+cx+d are real. Find the smallest value the product (β12+1)(β22+1)(β32+1)(β42+1)(\beta_1^2+1)(\beta_2^2+1)(\beta_3^2+1)(\beta_4^2+1)(β12+1)(β22+1)(β32+1)(β42+1) can take.
Also try this.
Problem Loading...
Note Loading...
Set Loading...