We are given 4 lines with equations:

- $y = \Bigg( \dfrac{2 + 3a^2 + 3b^2(1 + a^2)^2 + b(6a + 6a^3)}{a + b(1 + a^2)} \Bigg)^2_{\min}$
- $y = \Bigg(\dfrac{c^2d^2 - 2c^2d + 2c^2 + 2cd - 2c + 1}{c^2d + c} \Bigg)_{\min} + 3 - \sqrt{8}$
- $y = [e]x^2$
- $y =\dfrac{1}{2} [e]x^2$

With $a,b,c,d > 0, e\geq 1$ .

The area bounded by the given lines and the curves when obtain a maximum value of $M$, with $M = \dfrac{a_{1}}{a_{2}}(\sqrt{a_{3}} - 1)(a_{4}\sqrt{a_{5}} - 1)$.

Find $a_{1} + a_{2} + a_{3} + a_{4} + a_{5}$.

**Details and Assumptions**:

- $[.]$ denote the greatest integer function.
- $(f(x))_{\text{min}}$ denote the minimum value of $f(x)$.