# Extraordinary Polynomial

**Algebra**Level 4

\(ax^3+bx^{2}+cx+d\) is a cubic polynomial,

where \((a,b,c,d)\epsilon N\)

has real roots \(x_{1},x_{2},x_{3}\)

such that ,

\(f(2)=140\)

\(f(3)=240\)

\(f(5)=560\)

\(f(7)=1080\)

Then evaluate ,

\((\sum_{i=1}^{3}2+x_{i}) + (\sum_{i=1}^{3}3+x_{i})+(\sum_{i=1}^{3}5+x_{i})\)