\[\large\dfrac{\sqrt{\color{green}{10}\color{blue}+\sqrt{1}}\color{blue}+\sqrt{\color{green}{10}\color{blue}+\sqrt{2}}\color{blue}+\cdots\color{blue}+\sqrt{\color{green}{10}\color{blue}+\sqrt{99}}}{\sqrt{\color{green}{10}\color{purple}-\sqrt{1}}\color{blue}+\sqrt{\color{green}{10}\color{purple}-\sqrt{2}}\color{blue}+\cdots\color{blue}+\sqrt{\color{green}{10}\color{purple}-\sqrt{99}}} \]

If the expression above equals to \( a+\sqrt{b} \) for positive integers \(a\) and \(b\), find \(a+b\).

×

Problem Loading...

Note Loading...

Set Loading...