\[ \LARGE{
\require{enclose}
\begin{array}{rll}
\phantom{0}\ \mathrm{\large7} \ \mathrm{x} \ \mathrm{x} \ \mathrm{x} && \\[-1pt]
\mathrm{x} \ \mathrm{x} \ \mathrm{x} \

\enclose{longdiv}{
\mathrm{x} \ \mathrm{x} \ \mathrm{x} \ \mathrm{x} \ \mathrm{x} \ \mathrm{x} }\kern-.2ex \\[-1pt]
\underline{ \mathrm{x} \ \mathrm{x} \ \mathrm{x} \ \phantom 0 \ \phantom 0 \ \phantom 0 } \\[-1pt]
{ \mathrm{x} \ \mathrm{x} \ \mathrm{x} \ \mathrm{\large7} \ \phantom0 \ \phantom0 \ }\kern-.2ex \\[-1pt] \underline{ \mathrm{x} \ \mathrm{x} \ \mathrm{x} \ \mathrm{x} \ \phantom 0 \ \phantom 0 } && \\[-1pt]
{ \mathrm{x} \ \mathrm{x} \ \mathrm{x} \ \mathrm{x} }\kern-.2ex \\[-1pt]
\underline{ \mathrm{x} \ \mathrm{x} \ \mathrm{x} \ \mathrm{x} } && \\[-1pt] \mathrm{\large7}
\end{array} } \]

The above is a long division with most of the digits of any number hidden, except for the three 7's. Given that each of 0, 1, 2, ..., 9 was used at least once for the hidden digits, figure out all of the digits hiding and submit your answer as the value of the dividend (the 6-digit number being divided).

\(\)

**Details and Assumptions:**

- Each \(\mathrm X\) represents a single-digit integer.
- The leading (leftmost) digit of a number cannot be 0.

×

Problem Loading...

Note Loading...

Set Loading...