Let \(f(x)\) be a quintic polynomial such that

\[ \begin{array} { r l } f(1) & = 1 \\ f(2) & = 1 \\ f(3) & = 2 \\ f(4) & = 3 \\ f(5) & = 5 \\ f(6) & = 8. \\ \end{array} \]

Determine \( f(7)\).

**Note:** Many people are answering this incorrectly because they think it is the Fibonacci sequence, but this problem is asking about a **quintic polynomial** that passes through those points. That does not necessarily mean the next term behaves as the Fibonacci sequence would.

×

Problem Loading...

Note Loading...

Set Loading...