Forgot password? New user? Sign up

Existing user? Log in

If $\dfrac{1^3 - 2^2}{1!} + \dfrac{2^3 - 3^2}{2!} + \dfrac{3^3 - 4^2}{3!} + \cdots + \dfrac{100^3 - 101^2}{100!} = 1 - \dfrac{a}{b}$ for some coprime positive integers $a, b,$ find the last three digits of $a.$

Problem Loading...

Note Loading...

Set Loading...