New user? Sign up

Existing user? Log in

If \[ \dfrac{1^3 - 2^2}{1!} + \dfrac{2^3 - 3^2}{2!} + \dfrac{3^3 - 4^2}{3!} + \cdots + \dfrac{100^3 - 101^2}{100!} = 1 - \dfrac{a}{b}\] for some coprime positive integers \(a, b,\) find the last three digits of \(a.\)

Problem Loading...

Note Loading...

Set Loading...