Forgot password? New user? Sign up

Existing user? Log in

There exists a smallest possible positive integer $N$ such that

$\dfrac{(x_1+2x_2+\cdots +2014x_{2014})^2}{x_1^2+x_2^2+\cdots +x_{2014}^2}\le N$

for all real sequences $\large \{x_i\}_{i=1}^{2014}$.

Find the sum of digits of $N$.

Problem Loading...

Note Loading...

Set Loading...