$\displaystyle \large \lim_{n \to \infty} \left(\frac{n + a}{n - a}\right)^n = e$

Find the value of $a$ that satisfies the equation above. If the answer can be expressed as $\dfrac mn$ for positive integers $(m, n)$, enter your answer as $\left(\sqrt{n + \sqrt{m}}\right)^n$.

**Notation:** $e \approx 2.71828$ denotes the Euler's number.

×

Problem Loading...

Note Loading...

Set Loading...