Let \(f(x) = \sin^{-1} (m^2-3m+1) \sec \left( \dfrac{|x|}3 \right) - \lfloor e^{m-4} \rfloor (\sin \{ x \} ) \).
If \(f(x) \) is periodic, find the number of possible non-negative integral value(s) of \(m\).
Notations:
\( \lfloor \cdot \rfloor \) denotes the floor function.
\( \{ \cdot \} \) denotes the fractional part function.
\( | \cdot | \) denotes the absolute value function.
Problem Loading...
Note Loading...
Set Loading...