Floor function and 2016

Algebra Level 5

\[\large \left\lfloor \frac { { 1 }^{ 2 } }{ 2016 } \right\rfloor ,\left\lfloor \frac { { 2 }^{ 2 } }{ 2016 } \right\rfloor ,\left\lfloor \frac { { 3 }^{ 2 } }{ 2016 } \right\rfloor ,\left\lfloor \frac { { 4 }^{ 2 } }{ 2016 } \right\rfloor , \ldots ,\left\lfloor \frac { { 2016 }^{ 2 } }{ 2016 } \right\rfloor \]

How many distinct integers are there in the sequence above?

Notation: \( \lfloor \cdot \rfloor \) denotes the floor function.

×

Problem Loading...

Note Loading...

Set Loading...