\[ \large \int_1^\infty \dfrac{\{ x \}} {x^5} \, \mathrm{d}x \]

If the value of the integral above is equal to \(\dfrac1A - \dfrac{\pi^B}C \) for positive integers \(A\), \(B\) and \(C\), find \(A+B+C\).

**Bonus**: Find the general form of \( \displaystyle \int_1^\infty \dfrac{\{x\}}{x^n} \, \mathrm{d}x \).

**Clarification**: \(\{x\}\) denotes the fractional part function.

×

Problem Loading...

Note Loading...

Set Loading...