\[\large\displaystyle\int \limits^{2}_{-2} \displaystyle\int \limits^{\sqrt{4- x^{2}} }_{-\sqrt{4-x^{2}} }\displaystyle\int \limits^{\sqrt{4- x^{2}- y^{2}} }_{-\sqrt{4-x^{2}- y^{2}} }\left( x^{2}+ y^{2}+ z^{2}\right) ^{\frac{3}{2} }\, dx\, dy \, dz \]
###### Image Credit: Flickr lalique7.

If the value of triple integral above equals to \( \frac AB \pi \) for coprime positive integers \(A\) and \(B\), find the value of \(A+B\).

×

Problem Loading...

Note Loading...

Set Loading...