Let the roots of $x^j=1$ be $\large 1, \omega_{j_{1}} , \omega_{j_{2}} , \dots \omega_{j_{j-1}}$, then find the value of:

$\large \displaystyle \sum_{j=2}^{61} \sum_{i=1}^{j-1} \frac{1}{1 - \omega_{j_{i}}}$

×

Problem Loading...

Note Loading...

Set Loading...