# Function Challenge 4

**Algebra**Level pending

Consider 2 functions \(f(x)\), \(g(x)\) that is defined on the interval \([0, \infty)\) where \[f(x)=x^3+x^2+x+2\] \[g(x)=2f^{-1}(x)-1\] Find the value of \(g^{-1}(0)+g^{-1}(3)\).

(Note: \(f^{-1}(x)\) is the inverse function of \(f(x)\))