Forgot password? New user? Sign up
Existing user? Log in
Let f:N→Nf : \mathbb{N} \to \mathbb{N}f:N→N be a strictly increasing function such that f(2)=8f(2) = 8f(2)=8 and f(ab)=f(a)⋅f(b)f(ab) = f(a) \cdot f(b)f(ab)=f(a)⋅f(b) for gcd(a,b)=1\gcd(a, b) = 1gcd(a,b)=1.
Evaluate the number of triples of positive integers (a,b,n)(a,b,n)(a,b,n) satisfying the equation f(n)=a3+b3.f(n) = a^3 + b^3.f(n)=a3+b3.
Problem Loading...
Note Loading...
Set Loading...