\[\large{f \left( x + \dfrac{y}{x} \right ) = f(x) + \dfrac{f(y)}{f(x)} + 2y}\]

Let \(f(x): \mathbb{Q}^+ \rightarrow \mathbb{R} \) be a function such that it satisfies the above functional equation for every \(x,y\) belonging to the set of **positive rational** numbers. Then find the value of \(f(2015)\).

×

Problem Loading...

Note Loading...

Set Loading...