Forgot password? New user? Sign up

Existing user? Log in

$\large f(x) = \cfrac{\cos x}{\left\lfloor \frac{2x}{\pi} \right\rfloor + \frac{1}{2}}$

What is the value of $f(x)$ above for all $x \ne n \pi$, where $n \in \mathbb Z$?

Problem Loading...

Note Loading...

Set Loading...