Functions 05

Algebra Level 4

\[ \large f(x) = \cfrac{\cos x}{\left\lfloor \frac{2x}{\pi} \right\rfloor + \frac{1}{2}}\]

What is the value of \(f(x)\) above for all \(x \ne n \pi\), where \(n \in \mathbb Z\)?

×

Problem Loading...

Note Loading...

Set Loading...