# Functions (2)

**Algebra**Level 4

Let \(f: (0, \infty) \to \mathbb R \) be a function satisfying \(f(x) + e^{f(x)} = \dfrac2x - \ln x - 1\). Find the range of \(x\) satisfying the inequality \[ f(2x^2 + 1) - f(x^2 + 5) \geq f(1) . \],\(x>0\)

**Notation**: \(\mathbb R \) denotes the set of real numbers.