Forgot password? New user? Sign up
Existing user? Log in
Let F(x)=x−⌊x⌋F(x) = x - \lfloor x \rfloor F(x)=x−⌊x⌋. Find the number of solutions to the equation F(x)+1F(x)=1F(x) + \dfrac1{F(x)} = 1 F(x)+F(x)1=1.
Notation: ⌊⋅⌋ \lfloor \cdot \rfloor ⌊⋅⌋ denotes the floor function.
Problem Loading...
Note Loading...
Set Loading...