Functions and Behudapanti

Algebra Level 4

A non-zero polynomial \(f\) satisfies

\[f(f(x)) = (x + x^2 + x^3 + \ldots) f(f(f(x))\]

for all \(0 < x < 1\). Determine the smallest value of \(f(x)^2 + x\) where \(x\) ranges over all real numbers.

×

Problem Loading...

Note Loading...

Set Loading...