Forgot password? New user? Sign up

Existing user? Log in

Find the number of functions such that $f:\mathbb{R}\rightarrow\mathbb{R}$ satisfying $f(x^{2} + yf(z))=xf(x) + zf(y)$ for all $x,y,z\in \mathbb{R}$.

Problem Loading...

Note Loading...

Set Loading...