Find the number of functions \( f : \mathbb{R} \rightarrow \mathbb{R} \) such that \[f(x+y)=f(x)\cdot f(y)\cdot f(xy)\] for all \(x,y\) in \( \mathbb{R} \).

**Note:** \( \mathbb{R}\) denotes the set of real numbers.

×

Problem Loading...

Note Loading...

Set Loading...