Forgot password? New user? Sign up

Existing user? Log in

Find the number of functions $f : \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x+y)=f(x)\cdot f(y)\cdot f(xy)$ for all $x,y$ in $\mathbb{R}$.

Note: $\mathbb{R}$ denotes the set of real numbers.

Problem Loading...

Note Loading...

Set Loading...