Let \(f(x) + 5f\left(\dfrac{1}{1-x}\right) = \dfrac{1}{x}\) for for all real \(x\in \mathbb R \backslash \{ 0,1\} \). If \(f(5) = \dfrac ab\), where \(a\) and \(b\) are coprime positive integers, find \(a+b\).

**This problem is part of the set "Xenophobia"**

×

Problem Loading...

Note Loading...

Set Loading...