\[ \large \Gamma ^{ \prime \prime }\left( 3 \right) ={ F\gamma }^{ A }+\frac { { \pi }^{ B } }{ C } +D-E\gamma \]

The equation above holds true for integers \(A,B,C,D\) and \(E\). Find \(A+B+C+D+E+F\).

**Notations**:

\( \Gamma(\cdot) \) denotes the Gamma function. And \(\Gamma'' \) denotes the second derivative of the Gamma function.

\( \gamma\) denote the Euler-Mascheroni constant, \(\gamma \approx 0.5772 \).

×

Problem Loading...

Note Loading...

Set Loading...