# Generalise it first

**Calculus**Level 4

\[ \large \displaystyle \int_{1}^{x} \dfrac{\ln(t)}{1+t} \, dt \]

For \(x>0 \), let \(f(x) \) describe the function above.

Evaluate \( f(e) + f \left( \frac 1e \right) \).

\[ \large \displaystyle \int_{1}^{x} \dfrac{\ln(t)}{1+t} \, dt \]

For \(x>0 \), let \(f(x) \) describe the function above.

Evaluate \( f(e) + f \left( \frac 1e \right) \).

×

Problem Loading...

Note Loading...

Set Loading...