Generalization Of A Problem = Unique Symmetry

Calculus Level 4

Let \(\displaystyle I(n) = \int_0^1 \dfrac{ \ln(1-x^n)}x \, dx \). Compute \( \displaystyle \left \lfloor \; \left | \sum_{n=1}^\infty \dfrac{I(n)}n \right | \; \right\rfloor \).

×

Problem Loading...

Note Loading...

Set Loading...