Let \(g:\mathbb{R}\to\mathbb{R}\) be a differentiable function such that \(g(2)=-40\) and \(g^{\prime}(2)=-5\). Then find the value of \(\displaystyle \lim _{ x\to 0 }{ { \left( \dfrac { g\left( 2-{ x }^{ 2 } \right) }{ g\left( 2 \right) } \right) }^{\frac { 4 }{ { x }^{ 2 } } } } \).

**Notation:**

- \(g^{\prime}(x)\) denotes the first derivative of \(g(x)\).
- \(e \approx 2.718\) is the Euler's number.

×

Problem Loading...

Note Loading...

Set Loading...