Let \(n\geq 2\) be a positive integer. In terms of \(n\), find the number of roots of \(x^2 - \lfloor x^2 \rfloor = ( x- \lfloor x \rfloor )^2\) where \(1\leq x \leq n\).

\(\)

**Notation:** \( \lfloor \cdot \rfloor \) denotes the floor function.

×

Problem Loading...

Note Loading...

Set Loading...