GIF with Limits.

Calculus Level 4

Let \(f(x)\) be a non-constant real valued polynomial function such that at the point \(a\) we have \(f(a)^2+f'(a)^2=0\). Find the value of

\[\lim_{x \to a} \dfrac{f(x)}{f'(x)} \cdot \left\lfloor \dfrac{f'(x)}{f(x)} \right\rfloor\]

Note: \(f'(x) = \dfrac{d}{dx} f(x)\)


Practice the set Target JEE_Advanced - 2015 and boost up your preparation.
×

Problem Loading...

Note Loading...

Set Loading...