Forgot password? New user? Sign up
Existing user? Log in
∑k=1n⌊nk⌋ϕ(k) \large \sum_{k=1}^n \left \lfloor \frac nk \right \rfloor \phi(k) k=1∑n⌊kn⌋ϕ(k)
Let ϕ\phi ϕ denote the Euler's Totient Function. If the summation above is equal to n(n+A)B \dfrac{n(n+A)}B Bn(n+A), where AAA and BBB are integers, find the value of A+BA+BA+B.
Problem Loading...
Note Loading...
Set Loading...