Suppose we define a piecewise function, $\text{frankensine}(x)$ as described below.

$\text{frankensine}(x) = \begin{cases} \sin(x) \ \quad, \quad 0 < x < 2\pi \\ \sin(2x) \quad, \quad 2\pi < x < 2\pi\left(1 + \frac12 \right) \\ \sin(3x) \quad, \quad 2\pi\left(1 + \frac12 \right) < x < 2\pi\left(1 + \frac12 + \frac13\right) \\ \sin(4x) \quad, \quad 2\pi\left(1 + \frac12 + \frac13\right) < x < 2\pi\left(1 + \frac12 + \frac13+\frac14\right) \\ \vdots \\ \sin(nx) \quad, \quad 2\pi\left(1 + \frac12 + \frac13+\ldots + \frac1{n-1}\right) < x < 2\pi\left(1 + \frac12 + \frac13+\frac14+\ldots + \frac1n \right) \\ \vdots \end{cases}$

For integer $n$, let $\displaystyle A = \lim_{n\to\infty} \int_0^n \text{frankensine}(x) \, dx.$

What is the value of $\lfloor 1000A \rfloor$?

×

Problem Loading...

Note Loading...

Set Loading...