\[ \large 8\int_{1}^{ \infty} \frac {\left\lfloor x \right\rfloor} {x^{5}}\, dx\]

If the value of the above integral is equal to \( \dfrac { \pi^{a} } {b} \), find the value of \( a+b \).

**Note:**\( \left\lfloor x \right\rfloor \) is the greatest integer function.

×

Problem Loading...

Note Loading...

Set Loading...