\[ f(2017) + f(2016) + f(2015) +\cdots + f(4) + f(3) + f(2) + f \left(\frac{1}{2}\right) + f\left(\frac{1}{3}\right) + f\left(\frac{1}{4}\right) + \cdots + f\left(\frac{1}{2015}\right) + f\left(\frac{1}{2016}\right) + f\left(\frac{1}{2017}\right) \]

Given that \(f\) is a real function such that \( f(x) = \dfrac{x}{1-x} \) for \( x \neq 1 \). Find the value of the expression above.

×

Problem Loading...

Note Loading...

Set Loading...