Hard problem

Algebra Level 4

If \(a+b=1\), the minimum value of

\[\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\]

can be expressed in the form \(\frac{m}{n}\), where \(m,n\) are coprime, positive integers. Find the value of \(m+n\).

\(\textbf{(This problem is not original.)}\)

×

Problem Loading...

Note Loading...

Set Loading...