Have you heard of Euclidean Algorithm?

\[\begin{align} (\underbrace{7+7+7+\cdots+7}_{46 \text{ times}}) - (\underbrace{29+29+29+\cdots+29}_{11 \text{ times}}) &= 3 \\\\ (\underbrace{7+7+7+\cdots+7}_{21 \text{ times}}) - (\underbrace{29+29+29+\cdots+29}_{5 \text{ times}}) &= 2 \end{align}\]

Is it also possible to find positive integers \(m\) and \(n\) such that \[ (\underbrace{7+7+7+\cdots+7}_{m \text{ times}}) - (\underbrace{29+29+29+\cdots+29}_{n \text{ times}}) = 1 ? \]

×

Problem Loading...

Note Loading...

Set Loading...