Forgot password? New user? Sign up
Existing user? Log in
(7+7+7+⋯+7⏟46 times)−(29+29+29+⋯+29⏟11 times)=3(7+7+7+⋯+7⏟21 times)−(29+29+29+⋯+29⏟5 times)=2\begin{aligned} (\underbrace{7+7+7+\cdots+7}_{46 \text{ times}}) - (\underbrace{29+29+29+\cdots+29}_{11 \text{ times}}) &= 3 \\\\ (\underbrace{7+7+7+\cdots+7}_{21 \text{ times}}) - (\underbrace{29+29+29+\cdots+29}_{5 \text{ times}}) &= 2 \end{aligned}(46 times7+7+7+⋯+7)−(11 times29+29+29+⋯+29)(21 times7+7+7+⋯+7)−(5 times29+29+29+⋯+29)=3=2
Is it also possible to find positive integers mmm and nnn such that (7+7+7+⋯+7⏟m times)−(29+29+29+⋯+29⏟n times)=1? (\underbrace{7+7+7+\cdots+7}_{m \text{ times}}) - (\underbrace{29+29+29+\cdots+29}_{n \text{ times}}) = 1 ? (m times7+7+7+⋯+7)−(n times29+29+29+⋯+29)=1?
Problem Loading...
Note Loading...
Set Loading...