# Have you reached your limit?

**Calculus**Level 5

\[\large\displaystyle\lim_{n \to \infty} \left(e^{-n} \sum_{k=0}^{n} \dfrac{n^{k}}{k!}\right) = \dfrac{a}{b} \]

In the above equation, \(a\) and \(b\) are positive coprime integers. Find \(a + b\).

\[\large\displaystyle\lim_{n \to \infty} \left(e^{-n} \sum_{k=0}^{n} \dfrac{n^{k}}{k!}\right) = \dfrac{a}{b} \]

In the above equation, \(a\) and \(b\) are positive coprime integers. Find \(a + b\).

×

Problem Loading...

Note Loading...

Set Loading...