Forgot password? New user? Sign up
Existing user? Log in
If
an=∫0π/2(1−sinx)nsin2x dx\large a_n=\int_{0}^{{\pi}/ {2}} (1-\sin{x})^n \sin{2x} \, dxan=∫0π/2(1−sinx)nsin2xdx
, then
limm→∞∑n=1mann\large \lim_{m\to\infty} \sum_{n=1}^{m} \frac{a_n}{n}m→∞limn=1∑mnan
equals?
Problem Loading...
Note Loading...
Set Loading...