\[\displaystyle \int\limits_{0}^{\infty} f^2(x) dx = \frac{\pi^A}{B}\left(\log(C) - \psi(\frac{D}{E})\right)\]

where \[f(x) = \int\limits_{0}^{\infty} \cos(x\cosh(t)) dt\]

Calculate \(A+B+C+D+E\)

**Clarifications:**

- \(\psi(n)\) is polygamma function.
- \(A,B,C,D,E\) are integers.
- \(gcd(D,E)=1\)

This is a part of Hot Integrals

×

Problem Loading...

Note Loading...

Set Loading...