\[\textbf{Bessel Function}\] \[\displaystyle \int\limits_{0}^{\infty} \log^3(x)J_n(x) dx = \left(\psi^{(a)}(\frac{n+b}{c}) + \log d\right)^f + \frac{g}{h}\psi^{(i)}\left(\frac{n+k}{l}\right)\]

Find \(a+b+c+d+f+g+h+i+k+l\)

**Clarifications:**

\(J_n(x)\) is the Bessel function.

\(\psi^{(\lambda)}(\cdot)\) represents their usual meanings (Polygamma)

This is a part of Hot Integrals

×

Problem Loading...

Note Loading...

Set Loading...