Hot Integral - 2

Calculus Level 5

\[\large \displaystyle \int\limits_{0}^{\infty} \left(\frac{\sin x}{x}\right)^{102} \cos(100x) \, dx = \frac{\pi^A}{B\times \Gamma(C)}\]

If the equation above holds true for positive integers \(A,B\) and \(C\) with \(C\) maximized, evaluate \(A^{B^C}+C^{B^A}\).

Notation: \( \Gamma(\cdot) \) denotes the Gamma function.


This is a part of Hot Integrals.
×

Problem Loading...

Note Loading...

Set Loading...