\[ \large \displaystyle \int_0^\infty \dfrac{\{ f(x) \} }{e^{xy}} \, dx = \dfrac A{y^B} \left( C - \dfrac {y^D}{e^{y^E} - F }\right) \]

For \(f(x) = x - \left \lfloor x -\frac12\right\rceil \), the equation above is true for constant positive integers \(A,B,C,D,E\) and \(F\). Calculate the value of \(A+B+C+D+E+F\).

**Clarifications**:

\( \lfloor \cdot \rceil \) represents the

*nint*function (nearest integer function).\(\{ \cdot \} \) represents the fractional part function.

×

Problem Loading...

Note Loading...

Set Loading...