# How many \(x\)?

**Algebra**Level 3

\[ f(x) = \dfrac{1}{x^{1000}} + \dfrac{1}{x^{999}} +\cdots + \dfrac{1}{x} + 1 + x + x^2 + \cdots + x^{999} + x^{1000} \]

Consider the above function for all real positive \(x\). Find the minimum value of \(f(x) \).

\[ f(x) = \dfrac{1}{x^{1000}} + \dfrac{1}{x^{999}} +\cdots + \dfrac{1}{x} + 1 + x + x^2 + \cdots + x^{999} + x^{1000} \]

Consider the above function for all real positive \(x\). Find the minimum value of \(f(x) \).

×

Problem Loading...

Note Loading...

Set Loading...