Find the largest non-negative integer \(n\) such that \(2^n\) is a factor \[\left\lfloor\sqrt2\right\rfloor\times\left\lfloor\sqrt3\right\rfloor\times\left\lfloor\sqrt4\right\rfloor\times\cdots\times\left\lfloor\sqrt{99}\right\rfloor\]

×

Problem Loading...

Note Loading...

Set Loading...