\[ \large \int_0^\infty \dfrac{ \ln x}{\cosh^2 x} \, dx =\ln{ \left( \frac { A\pi }{ B } \right) } -C\gamma \]

The equation above holds true for positive integers \(A, B\) and \(C\), with \(A,B\) coprime. Find \(A+B+C\).

**Notation**: \( \gamma\) denote the Euler-Mascheroni constant.

×

Problem Loading...

Note Loading...

Set Loading...